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1 Overview

The MCLUST software [10, 12] has evolved to include the following features:

- Model-based clustering (model and number of clusters selected via BIC).

- Normal mixture modeling via EM for ten covariance structures.

- Simulation from parameterized Gaussian mixtures.

- Discriminant analysis via MclustDA.

- Model-based hierarchical clustering for four covariance structures.

- Displays, including uncertainty plots and random projections.

This manuscript describes Version 3 of MCLUST for R, which allows regularization in normal
mixture models via a Bayesian prior [13], A number of features of the software have been
changed as well, to reflect evoloution in its use. A comprehensive treatment of the methods
used in MCLUST can be found in [11, 13].

This version of MCLUST is available as a contributed package (mclust) in the R language and
can be obtained from http://cran.r-project.org/. Follow the instructions for installing
R packages on your machine, and then do

> library(mclust)

inside R in order to use the software. Throughout this manual it will be assumed that these
steps have been taken before running the examples.

2 Model-Based Cluster Analysis

MCLUST provides functionality for cluster analysis combining model-based hierarchical clus-
tering (section 5), EM for Gaussian mixture models (section 3), and BIC (section 4).

2.1 Basic Cluster Analysis Example using Mclust

As an illustration, consider the two-dimensional faithful dataset (included in the R language
distribution) shown in Figure 1. The following command performs a cluster analysis of the
faithful dataset, and prints a summary of the result:

> faithfulMclust <- Mclust(faithful)

> faithfulMclust

best model: EEE with 3 components

In this case, the best model is an equal-covariance model with 3 components or clusters.
The clustering results can be displayed as follows:
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Figure 1: The two-dimensional faithful dataset.
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Figure 2: Plots associated with the function Mclust for the faithful dataset with the default
arguments. Clockwise from upper left: BIC, classification, uncertainty, density. The ellipses super-
imposed on the classification and uncertainty plots correspond to the covariances of the components.
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Table 1: Parameterizations of the covariance matrix Σk currently available in MCLUST for hierar-
chical clustering (HC) and/or EM for multidimensional data. (‘•’ indicates availability).

identifier Model HC EM Distribution Volume Shape Orientation
E • • (univariate) equal
V • • (univariate) variable
EII λI • • Spherical equal equal NA
VII λkI • • Spherical variable equal NA
EEI λA • Diagonal equal equal coordinate axes
VEI λkA • Diagonal variable equal coordinate axes
EVI λAk • Diagonal equal variable coordinate axes
VVI λkAk • Diagonal variable variable coordinate axes
EEE λDADT • • Ellipsoidal equal equal equal
EEV λDkADT

k • Ellipsoidal equal equal variable
VEV λkDkADT

k • Ellipsoidal variable equal variable
VVV λkDkAkD

T
k • • Ellipsoidal variable variable variable

> plot(faithfulMclust, data = faithful)

The corresponding plots are shown in Figure 2. The covariance structures defining the models
available in MCLUST are summarized in Table 1; these models in MCLUST are explained in detail
in section A. The symbols used in the BIC plots to represent the various models are shown
in Table 2.

The input to Mclust includes the number of mixture components and the covariance
structures to consider. By default, Mclust compares BIC values for parameters optimized
for up to nine components and all ten covariance structures currently available in MCLUST.
The output includes the parameters of the maximum-BIC model (where the maximum is
taken over all of the models and numbers of components considered), and the corresponding
classification and uncertainty.

The object produced by Mclust is a list with a number of elements describing the selected
model. The names of these elements can be displayed as follows:

> names(faithfulMclust)

[1] "modelName" "n" "d" "G"

[5] "BIC" "bic" "loglik" "parameters"

[9] "z" "classification" "uncertainty"

A detailed description is provided in the Mclust help file.

2.2 mclustBIC and its summary function

To do further analysis, for example to see the results for the same dataset, but for a different
set of models and/or different numbers of components, Mclust could be rerun. However
this approach could involve unnecessary repetition of computations and could also take

7



Table 2: Symbols used to represent the different models in the BIC plots and their meaning.

●

●

●

●

Spherical/Univariate:
     EII/E equal variance
     VII/V unconstrained
 
Diagonal: 
     EEI equal variance
     EVI equal volume
     VEI equal shape    
     VVI unconstrained
 
Ellipsoidal: 
     EEE equal variance 
     EEV equal volume and shape 
     VEV equal shape
     VVV unconstrained

considerable time when the dataset is large or the process is to be repeated many times. An
alternative approach is to split the analysis into several parts using function mclustBIC.

For the faithful dataset, the following sequence of commands produces the same clus-
tering result as the call to Mclust.

> faithfulBIC <- mclustBIC(faithful)

> faithfulSummary <- summary(faithfulBIC, data = faithful)

> faithfulSummary

classification table:

1 2 3

130 97 45

best BIC values:

EEE,3 EEE,4 VVV,2

-2314.386 -2320.207 -2322.192

Although the method used for printing is different, faithfulSummary has the same com-
ponent names as faithfulMclust, except that it does not include "BIC", the table of BIC
values, which comprise the S-PLUS object faithfulBIC computed by mclustBIC:

> faithfulBIC

BIC:

EII VII EEI VEI EVI VVI EEE

1 -4024.721 -4024.721 -3055.835 -3055.835 -3055.835 -3055.835 -2607.623
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2 -3452.998 -3458.300 -2354.601 -2350.607 -2352.618 -2346.065 -2325.220

3 -3377.712 -3336.542 -2323.008 -2332.698 -2332.204 -2342.371 -2314.386

4 -3230.246 -3245.732 -2323.676 -2331.829 -2334.756 -2343.068 -2320.207

5 -3149.389 -3128.214 -2337.730 -2348.284 -2355.885 -2374.251 -2336.967

6 -3081.401 -3067.580 -2338.116 -2363.073 -2357.745 -2372.728 -2347.296

7 -2990.334 -2998.496 -2356.458 -2370.071 -2375.850 -2393.086 -2361.216

8 -2978.088 -2991.847 -2371.814 NA -2395.992 NA -2376.920

9 -2899.778 -2920.951 -2388.617 NA -2399.085 NA -2393.733

EEV VEV VVV

1 -2607.623 -2607.623 -2607.623

2 -2329.116 -2325.416 -2322.192

3 -2338.986 -2329.352 -2333.894

4 -2336.750 -2342.472 -2359.216

5 -2366.985 -2367.785 -2390.985

6 -2371.741 -2387.155 -2398.905

7 -2392.961 -2391.166 -2426.431

8 -2404.598 -2404.932 -2437.612

9 -2427.039 -2428.375 -2449.787

> plot(faithfulBIC)

The missing values are models and numbers of clusters for which parameter values could
not be fit (using the default initialization). For multivariate data, the default initialization
for all models uses the classification from hierarchical clustering based on an unconstrained
model. For univariate data, the default is to divide the data into quantiles for initialization.

The summary method for mclustBIC allows specification of the models and numbers of
clusters over which the best model is to be chosen, alllowing models other than the maximum
BIC model to be extracted and analyzed.

2.3 Extended Cluster Analysis Example

As an example of an extended analysis, consider the wreath data shown in Figure 3. There
are 1000 bivariate observations simultaed from a 14-component model in which the com-
ponent covariance matrices are of equal size and shape, but differ in orientation. The BIC
values can be obtained with a call to mclustBIC and then plotted:

> wreathBIC <- mclustBIC(wreath)

> plot(wreathBIC)

Refering to the BIC plot (shown on the left in Figure 4), the maximum BIC appears to be
outside the range of the default values for the number of components in mclustBIC (and
Mclust). More components (for example, up to 20) can be considered in the analysis without
recomputingprevious results:

> wreathBIC <- mclustBIC(wreath, G = 1:20, x = wreathBIC)

> plot(wreathBIC, G = 10:20)

> summary(wreathBIC, wreath)

9
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Figure 3: The two-dimensional wreath dataset, which consists of 1000 observations simulated from
a 14-component normal mixture in which the component covariance matrices are of equal size and
shape, but differ in orientation.
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Figure 4: BIC for wreath dataset. LEFT: BIC for all models and up to 9 components (the default
in mclustBIC and Mclust). RIGHT: BIC for 10:20 components, all models. There is a clear peak
for all models at 14 components.

The BIC plot is shown on the right in Figure 4. Use summary to obtain the best model
according to BIC, a 14-component EEV model is chosen, which is in agreement with how the
data was simulated.

> wreathModel <- summary(wreathBIC, data = wreath)

> wreathModel

classification table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

74 69 63 74 68 70 71 66 83 77 66 77 61 81

best BIC values:

EEV,14 EEV,15 EEV,16

-10902.77 -10919.96 -10944.09

The model for the wreath dataset is shown in Figure 5. The summary function can also be
used to restrict the set of models and/or numbers of clusters over which the best model is
chosen according to BIC. For example, the following commands produce the best spherical
model for the wreath data:

> wreathSphericalModel <- summary(wreathBIC, data = wreath,

modelNames = c("EII", "VII"))

> wreathSphericalModel

classification table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 5: The 14-component EEV (equal size and shape) model obtained for the wreath dataset.
The ellipses superimposed on the plot correspond to the covariances of the components.
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Figure 6: Pairs plot of trees dataset.

75 69 63 74 68 70 71 65 83 77 66 77 61 81

best BIC values:

EII,14 EII,15 EII,16

-11175.90 -11186.51 -11200.04

2.4 Regularizing with a Prior

It is now possible in MCLUST to specify a prior distribution to regularize the fit to the data.
We illustrate the use of a prior on the trees dataset (included in the R language distribution),
for which a pairs plot is shown in Figure 6.

The following commands compute and plot the BIC curves for the trees dataset pro-
vided in R with and without a prior. Without the prior, the BIC plot shows a number of
jagged peaks, and many BIC values are missing for some models due to failure in the EM
computations caused by singularity and/or shrinking components. With the prior, the BICs
are smoother and there are fewer EM failures. See Figure 7.

> treesBIC <- mclustBIC(trees) # default (no prior)

> plot(treesBIC)

> treesBICprior <- mclustBIC(trees, prior = priorControl())
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> plot(treesBICprior)
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Figure 7: BIC without (left) and with the prior for the trees dataset.

A function priorControl is provided in MCLUST for specifying the prior and its parame-
ters. When called with its defaults, it invokes another function called defaultPrior which
can serve as a template for specifying alternative priors. An example of the result of a call
to defaultPrior is shown below.

> defaultPrior(trees, G=2, modelName = "VVV")

$shrinkage

[1] 0.01

$mean

Girth Height Volume

13.24839 76.00000 30.17097

$dof

[1] 5

$scale

Girth Height Volume

Girth 6.203797 6.54109 31.42755

Height 6.541090 25.57640 39.47333

Volume 31.427545 39.47333 170.21710

For more detail on the prior and its specification, see Section A.3.
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2.5 Clustering with Noise and Outliers

MCLUST allows model-based clustering with noise. In the following example, Poisson noise is
added to the faithful dataset. A random initial estimate is used for the noise.

> b <- apply( faithful, 2, range)

> nNoise <- 500

> set.seed(0)

> poissonNoise <- apply(b, 2, function(x, n)

+ runif(n, min = min(x)-.1, max = max(x)+.1), n = nNoise)

> faithfulNdata <- rbind(faithful, poissonNoise)

> set.seed(0)

> faithfulNoiseInit <- sample(c(TRUE,FALSE),size=nrow(faithful)+nNoise,

replace=TRUE,prob=c(3,1))

> faithfulNbic <- mclustBIC(faithfulNdata,

initialization = list(noise = faithfulNoiseInit))

> faithfulNsummary <- summary(faithfulNbic, faithfulNdata)

> faithfulNsummary

classification table:

0 1 2

521 143 108

best BIC values:

EVI,2 VVI,2 EEI,2

-7996.437 -7998.035 -8000.251

The data and classification are shown in Figure 8.
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Figure 8: Cluster analysis of the faithful dataset with added Poisson noise. Upper Left: A
projection the 272 obervations of the faithful dataset (circles) with 500 Poisson noise points
(small dots). Upper Right: MCLUST classification starting with random noise estimate. Lower:
BIC.
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2.6 Further Considerations in Cluster Analysis

Clustering can be affected by parameters settings such as convergence tolerances within the
clustering functions, although the defaults are most often adequate. It is also possible do
model-based clustering starting with parameter estimates, conditional probabilities, or clas-
sifications other than those produced by model-based hierarchical clustering. The functions
provided for mixture estimation (Section 3) and BIC (Section 4) can be used for this purpose.

Finally, it is important to take into account numerical issues in cluster analysis. The
EM computations break down when the covariance corresponding to one or more compo-
nents becomes ill-conditioned (singular or nearly singular). In general they cannot proceed
if clusters contain only a few observations or if the observations they contain are very nearly
colinear. Computations may also fail when one or more mixing proportions shrink to neg-
ligible values. The EM functions in MCLUST compute and monitor the conditioning of the
covariances, and an error condition is issued (unless such warnings are turned off) when the
associated covariance appears to be nearly singular, as determined by a threshold with the
default value emControl()$eps.

3 EM for Mixture Models

MCLUST provides iterative EM (Expectation-Maximization) methods for maximum likelihood
estimation in parameterized Gaussian mixture models. In the models considered here, an
iteration of EM consists of an ‘E’-step, which computes a matrix z such that zik is an
estimate of the conditional probability that observation i belongs to group k given the
current parameter estimates, and an ‘M-step’, which computes parameter estimates given z.

MCLUST functions em and me implement the EM algorithm for parameterized Gaussian
mixtures. Function em starts with the E-step; besides the data and model specification,
the model parameters (means, covariances, and mixing proportions) proportions must be
provided. Function me starts with the M-step; besides the data and model specification,
the conditional probabilities z must be provided. The output for both are the maximum
likelihood estimates of the model parameters and z.

3.1 Individual E and M Steps

Functions estep and mstep implement the individual steps of the EM iteration. Conditional
probabilities z and the log likelihood can be recovered from parameters via estep, while
parameters can be recovered from conditional probabilities z using mstep. Below we apply
mstep and estep to the iris dataset (included in the R language distribution).

> ms <- mstep( modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> names(ms)

[1] "modelName" "prior" "n" "d" "G"

[6] "z" "parameters"

> es <- estep( modelName = "VVV", data = iris[,-5],

parameters = ms$parameters)
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> names(es)

[1] "modelName" "n" "d" "G" "z"

[6] "parameters" "loglik"

In this example, the initial estimate of z for the M-step is a matrix of indicator variables
corresponding to a discrete classification (iris[,5]). The function unmap converts a discrete
classification into the corresponding indicator variables. MCLUST allows specification of a
prior, for which the EM algorithm will compute a posterior mode. See Sections 2.4 and
A.3 for more details. In Section 7.1, we show how to use mstep and estep for discriminant
analysis.

3.2 Uncertainty

The uncertainty in the classification associated with conditional probabilities z can be ob-
tained by subtracting the probability of the most likely group for each observation from
1:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> uncer <- 1 - apply( meVVViris$z, 1, max)

The R function quantile applied to the uncertainty gives a measure of the quality of the
classification.

> quantile(uncer)

0% 25% 50% 75% 100%

0.000000e+00 0.000000e+00 1.907041e-08 1.392060e-03 3.361880e-01

In this case the indication is that the majority of observations are well classified. Note,
however, that when groups intersect, uncertain classifications would be expected in the
overlapping regions.

When a true classification is known, the relative uncertainty of misclassified observations
can be displayed by function uncerPlot, as is done below for the iris example (see Figure
9):

> uncerPlot(z = meVVViris$z, truth = iris[,5])

It is also possible to plot an uncertainty curve for one-dimensional data (see Section 8) or
an uncertainty surface for two-dimensional data (see Section 9.1).
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Figure 9: Uncertainty plot for the the 3-cluster mixture model fit of the iris dataset via EM
based on unconstrained Gaussian mixtures. The vertical lines indicate misclassified observations.
The plot was created with function uncerPlot, and shows the relative uncertainty of misclassified
observations.
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3.3 Control Parameters

Besides the initial values and the prior, other parameters can influence the outcome of em or
me. These include:

tol Iteration convergence tolerance. The default is emControl()$tol=c(1.e-5,
√

εM),
where εM is the relative machine precision, which has the value 2.220446e-16 on
IEEE compliant machines. The first value is the tolerance for relative convergence of
the loglikelihood in the EM algorithm, and the second value is the relative parameter
convergence tolerance for the M-step for those models that have an iterative M-step
("VEI", "VEE", "VVE", "VEV").

eps A tolerance for terminating iterations due to ill-conditioning, such as near singularity
in covariance matrices. The default is emControl()$eps which is set to the relative
machine precision εM .

A function emControl is provided in MCLUST for setting these parameters and supplying
default values. Although these are in some sense hidden by the defaults, they may have
a significant effect on results in some instances and should be taken into consideration in
analysis.

4 Bayesian Information Criterion

MCLUST provides a function bic to compute the Bayesian Information Criterion (BIC) [21]
given the maximized loglikelihood for model, the data dimensions, and the number of com-
ponents in the model. The BIC is the value of the maximized loglikelihood with a penalty
for the number of parameters in the model, and allows comparison of models with differing
parameterizations and/or differing numbers of clusters. In general the larger the value of
the BIC, the stronger the evidence for the model and number of clusters (see, e.g. [11]).
The following shows the BIC calculation in MCLUST for the 3-cluster classification the iris

dataset with the unconstrained variance model:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> bic( modelName = "VVV", loglik = meVVViris$loglik,

n = nrow(iris), d = ncol(iris[,-5]), G = 3)

[1] -580.8397

5 Model-Based Hierarchical Clustering

MCLUST provides functions hc for model-based hierarchical agglomeration, and hclass for
determining the resulting classifications. Function hc implements fast methods based on the
multivariate normal classification likelihood [8]. We use the iris dataset distributed with R

in our example. Figure 10 is a pairs plot of the iris dataset in which the three species are
differentiated by symbol, obtained by the following command:
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> clPairs(data = iris[,-5], classification = iris[,5])

Below we apply the hierarchical clustering algorithm for unconstrained covariances (VVV) to
the iris dataset:

> hcVVViris <- hc(modelName = "VVV", data = iris[,-5])

The classification produced by hc for various numbers of clusters can be obtained with
hclass. For example, for the classifications corresponding to 2 and 3 clusters:

> cl <- hclass(hcVVViris, 2:3)

The classifications can be displayed with the data using clPairs:

> clPairs(data = iris[,-5], classification = cl[,"2"])

> clPairs(data = iris[,-5], classification = cl[,"3"])

More options for displaying clustering and classification results are discussed in Section
9. The 3-group classification can be compared with the known 3-group classification into
species, which is given in the 5th column of the iris data, using function classError:

> classError(cl[,"3"], truth = iris[,5])

$misclassifiedPoints

[1] 102 107 114 115 120 122 124 127 128 134 139 143 147 150

$errorRate

[1] 0.09333333

Function hc starts by default with every observation of the data in a cluster by itself, and
continues until all observations are merged into a single cluster. Arguments partition and
minclus can be used to initialize the process at a chosen nontrivial partition, and to stop it
before it reaches the final stage of merging.

Function hc for model-based hierarchical clustering based on the unconstrained (VVV)
model is used to obtain initial values for the model-based clustering functions Mclust and
mclustBIC.
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Figure 10: Pairs plot of the iris dataset showing classifcation into species.
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6 Density Estimation

The clustering capabilities of MCLUST can also be viewed as a general strategy for multivariate
density estimation. After applying the clustering functions to fit a model to the data, function
dens can be used to get the density of a given point relative to that model. As an example,
we use the two-dimensional faithful dataset (see Figure 1).

First, we use Mclust or (mclustBIC and summary) to get a model for the data, as was
done in Section 2:

> faithfulMclust <- Mclust(faithful)

The faithful dataset is two dimensional, so for plotting the density can be computed over
a grid. Function grid1 forms a one dimensional grid of a given size over a given range of
values, while grid2 forms a two dimensional grid given two sequences of values.

> apply(faithful, 2, range)

eruptions waiting

[1,] 1.6 43

[2,] 5.1 96

> x <- grid1( 100, range = range(faithful$eruptions))

> y <- grid1( 100, range = range(faithful$waiting))

> xy <- grid2(x,y)

> xyDens <- dens(modelName = faithfulMclust$modelName, data = xy,

parameters = faithfulMclust$parameters)

> xyDens <- matrix(xyDens, nrow = length(x), ncol = length(y))

The faithful dataset is two-dimensional, so the result can be plotted using S-PLUS func-
tions contour, persp, or image.

> par(pty = "s")

> Z <- log(xyDens)

> persp(x = x, y = y, z = Z, box = FALSE)

> contour(x = x, y = y, z = Z, nlevels = 10)

> image(x = x, y = y, z = Z)

These plots are shown in Figure 11.
Probably the most common application for density estimation is discriminant analysis,

for which a detailed discussion is given in Section 7.
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Figure 11: Perspective, contour and image plots of an MCLUST density estimate for the faithful
dataset.
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7 Discriminant Analysis

In discriminant analysis, observations of known classification are used to classify others.
MCLUST provides several approaches to discriminant analysis. We demonstrate some possible
methods applied to the faithful dataset using the three-group model-based classification
shown in Figure 2 as the ground truth:

> faithfulMclust <- Mclust(faithful)

> faithfulClass <- faithfulMclust$classification

7.1 Discriminant Analysis using mstep and estep

MCLUST functions mstep and estep implementing the individual steps of the EM algorithm
for Gaussian mixtures can be used for discriminant analysis. The idea is to produce a density
estimate for the training data which is a mixture model, in which each known class is modeled
by a single Gaussian term.

First, the parameterization giving the best model fit to the training data must be chosen.
Most commonly, this would be done by leave-one-out cross validation. Leaving out one
training observation at a time, function cv1EMtrain fits each model using mstep, then
classifies the observation that was left out using estep. The output of cv1EMtrain is the
error rate for each model; that is, the fraction of left-out observations correctly classified by
the model fit to the remaining observations.

Using the odd numbered observations in the faithful dataset as a training set, the
result is:

> odd <- seq(from=1, to=nrow(faithful), by=2)

> round(cv1EMtrain(data = faithful[odd,], labels = faithfulClass[odd]),3)

EII VII EEI VEI EVI VVI EEE EEV VEV VVV

0.162 0.162 0.037 0.037 0.044 0.044 0.015 0.015 0.015 0.022

The crossvalidation error achieves a minimum for the elliptical, equal shape models EEE,
EEV, and VEV. Of these we choose the most parsimonious model EEE. When there are two
training classes, the EEE model corresponds to linear discriminant analysis, while the VVV

model corresponds to quadratic discriminant analysis (e.g. [17]).
To classify the even data points, we first compute the parameters corresponding to the EEE

model for the odd data points using mstep, then use estep to get conditional probabilities
z and a classification:

> modelEEE <- mstep(modelName = "EEE", data=faithful[odd,],

z=unmap(faithfulClass[odd]))

> classEEE <- map(estep(modelName = "EEE", data=faithful,

parameters = modelEEE$parameters)$z)

> classError(classEEE[odd], faithfulClass[odd])$errorRate

[1] 0.007352941

> even <- seq(from=2, to=nrow(faithful), by=2)
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> classError(classEEE[even], faithfulClass[even])$errorRate

[1] 0.007352941

> classError(classEEE[even], faithfulClass[even])$misclassified

[1] 17

The error rates for the training [odd-numbered] data and the test [even-numbered] data are
identical (.735%); two data points are misclassified:

> classError(classEEE, faithfulClass)$misclassified

[1] 34 71

The classification and the misclassified observations are shown in Figure 12. Not surprisingly,
the misclassified observations fall in the reason where the cluster overlap.
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Figure 12: Classification errors from discriminant analysis for the faithful dataset using mstep
and estep. Filled symbols are the misclassified data points.

Another option for model selection that is faster to compute than crossvalidation is to
select the best fitting model via BIC after using mstep to fit each model to the training
data. A function bicEMtrain is provided within MCLUST for this purpose. For the faithful

dataset, BIC for the models fitted to the odd-numbered observations is:

> round(bicEMtrain(faithful[odd,], labels = faithfulClass[odd]),0)
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EII VII EEI VEI EVI VVI EEE EEV VEV VVV

-1761 -1771 -1187 -1196 -1194 -1204 -1183 -1193 -1202 -1210

BIC chooses EEE as the best model, so in this case the training and test errors are the same
as for crossvalidation, and the classification results are as shown in Figure 12.

Although in this case crossvalidation and BIC happen to choose the same model, for
other datasets the models selected, and hence the discriminant results, could be different.
Cross-validation is much more computationally intensive procedure for model-selection than
BIC, although timing comparisons between cv1EMtrain and bicEMtrain should not be
considered a valid algorithmic comparison because there are more efficient ways to compute
crossvalidation using updating schemes and compiled code.

7.2 Mixture Discriminant Analysis via MclustDA

In Section 7.1, discriminant analysis was accomplished modeling the training data by a
mixture density with a single Gaussian component for each class. That section also showed
how to choose the appropriate cross-cluster constraints to give the lowest training error
rate using either leave-one-out crossvalidation or BIC. A more flexible alternative is to use
model-based clustering to fit a Gaussian mixture model as a density estimate for each class
in the training set. We illustrate the methods in this section with the 2-group model from
model-based clustering for the faithful dataset as ground truth:

> faithfulBIC2 <- mclustBIC(faithful, G=2)

> faithfulClass2 <- summary(faithfulBIC2, faithful)$classification

7.2.1 mclustDA

If both training and test sets are given in advance, function mclustDA can be used for
discriminant analysis. Its input is the training data and associated class labels, and the test
data (optionally with labels). The output of mclustDA includes the mixture models for the
training data, the classification of both the test data and training data under the model,
posterior probabilities for the test data, and the training error rate.

> faithfulMclustDA <- mclustDA(train = list(data = faithful[odd,],

labels = faithfulClass2[odd]),

test = list(data = faithful[even,],

labels = faithfulClass2[even]))

XXX EEI

1 2

> faithfulMclustDA

Modeling Summary:

trainClass mclustModel numGroups

1 1 XXX 1

2 2 EEI 2

Test Classification Summary:
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1 2

101 35

Training Classification Summary:

1 2

75 61

Training Error: 0

Test Error: 0.007352941

The error rates for mclustDA classification are 0% and .735% for the training [odd-numbered]
and test [even-numbered] data, respectively.

These discriminant analysis results can be plotted as follows:

> plot(discrim, trainData = faithful[odd,], testData = faithful[even,])

Figure 13 shows some plots of the results: The training models are shown in Figure 14.

7.2.2 mclustDAtrain and mclustDAtest

Often more flexibility is required in discriminant analysis. For example, a suitable training
set may need to be chosen and/or it may be desirable to test additional data after a training
density has already been established. Since training typically takes much more time that
testing, it can be advantageous to separate training and testing computations. Function
mclustDAtrain allows users to choose training model parameterizations, and selects from
among all available models as a default. The output of mclustDAtrain is a list, each element
being the model for each class.

In the simplest case, a single Gaussian could be fit to each training class. This is similar to
the discriminant analysis procedure of Section 7.1, except that in MclustDA a model for each
class of the training data is chosen separately, instead of choosing a parameterized mixture
model (which may have cross-cluster constraints) for all of the training data. MclustDA uses
BIC (see section 4), which adds a penalty term to the maximized loglikelihood that increases
with the number of parameters, to select the model.

By default, mclustDAtrain will fit up to nine components for each possible model. Re-
sults for the odd-numbered observations in the fauthful dataset are as follows:

> faithfulTrain <- mclustDAtrain(data = faithful[odd,],

labels = faithfulClass2[odd])

XXX EEI

1 2

The training models are shown in Figure 14.
The density of observations under the training models can be obtained using mclustDAtest,

while the classification and posterior probabilities of the test or other data can be recovered
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Figure 13: Plots associated with mclustDA on the faithful dataset. Upper Left: the training
[odd-numbered/circles] and test [even-numbered/crosses] faithful data. Upper Right: the training
data with known classification. Lower Left: the mclustDA classification of the test data. Lower
Right: the errors (filled symbols) in using the mclustDA model to classify the test data.

29



1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

Figure 14: mclustDA training models for the odd numbered observations of the faithful dataset,
using the two-group classification from model-based clustering as ground truth. One of the classes
is modeled by a two-group equal variance diagonal model, and the other by a single unconstrained
normal.
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from the summary function for mclustDAtest. The test (even-numbered) classfication and
error can be obtained as follows:

> faithfulEvenTest <- mclustDAtest(models=faithfulTrain, data=faithful[even,])

> names(summary(faithfulEvenTest))

[1] "classification" "z"

> classError(summary(faithfulEvenTest)$classification,

faithfulClass2[even])$errorRate

[1] 0.007352941

The training (odd-numbered) classfication and error can be obtained as follows:

> faithfulOddTest <- mclustDAtest(models=faithfulTrain, data=faithful[odd,])

> classError(summary(faithfulOddTest)$classification,

faithfulClass2[odd])$errorRate

[1] 0
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8 One-Dimensional Data

The MCLUST functions for clustering, density estimation and discriminant analysis can be
applied to one-dimensional as well as multidimensional data. Analysis is somewhat simplified
since there are only two possible models — equal variance (denoted E) or varying variance
(denoted V).

8.1 Clustering

Cluster analysis for one-dimensional data can be carried out as for two and higher dimensions.
As an example, we use the precip dataset (included in the R language distribution):

> precipMclust <- Mclust(precip)

> plot(precipMclust, precip)

Figure 15 shows the BIC, classification, uncertainty, and density for this example.
The analysis can also be divided into two parts: BIC computation via mclustBIC and

model computation via summary, as shown below for the rivers dataset (included in the R

language distribution):

> riversBIC <- mclustBIC(rivers)

> plot(riversBIC)

> riversModel <- summary(riversBIC, rivers)

> riversModel

classification table:

1 2 3

76 52 13

best BIC values:

V,3 V,4 V,5

-2015.579 -2022.513 -2035.102

There is a special plotting function mclust1Dplot for one-dimensional model-based cluster-
ing. As an example, we compare graphical results the 2-component maxmimum BIC model
with the 3-component model:

> riversModel2 <- summary(riversBIC, rivers, G = 2)

> mclust1Dplot(data = rivers, what = "classification",

parameters=riversModel$parameters, z=riversModel$z)

> mclust1Dplot(data = rivers, what = "density",

parameters=riversModel$parameters, z=riversModel$z)

> abline(v = riversModel$parameters$mean, lty = 3)
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Figure 15: Model-based clustering of the one-dimensional R dataset precip. Clockwise from
upper left: BIC, classification, uncertainty, and density from Mclust applied to the simulated one-
dimensional example. In the classification plot, all of the data is displayed at the bottom, with the
separated classes shown different levels above.

> mclust1Dplot(data = rivers, what = "classification",

parameters=riversModel2$parameters, z=riversModel2$z)

> mclust1Dplot(data = rivers, what = "density",

parameters=riversModel2$parameters, z=riversModel2$z)

> abline(v = riversModel2$parameters$mean, lty = 3)

Vertical lines are added at the means of each component. Figure 16 shows the classification
and density corresponding to the two and three components cases for this example. A density
estimates can also be computed and plotted directly:

> points <- seq(from = min(rivers), to = max(rivers), length = 1000)

> riversDens3 <- dens(modelName = riversModel$modelName, data = points,

parameters = riversModel$parameters)

> abline(v = riversModel$parameters$mean, lty = 3)
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Figure 16: 2 and 3 component classifications and densities for the one-dimensional R dataset
rivers. Vertical lines have been added to the density plots to show the location of the component
means.

> plot(points, riversDens3, type = "l")

> riversDens2 <- dens(modelName = riversModel2$modelName, data = points,

parameters = riversModel2$parameters)

> plot(points, riversDens2, type = "l")

> abline(v = riversModel2$parameters$mean, lty = 3)

8.2 Discriminant Analysis

To illustrate discriminant analysis on one-dimensional data, we use simulated data from a
normal mixture consisting of two components with variance 1 centered at -9 and 9, respec-
tively, and one component with variance 4 centered at 0:

> set.seed(0)

> x <- c(rnorm(300, -9), rnorm(400, 0, sd = 2), rnorm(300, 9))

We use the following simulated data as a test set:
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> set.seed(1)

> y <- c(rnorm(100, -9), rnorm(100, 0, sd = 2), rnorm(100, 9))

The density of the distribution from which the training data is drawn is shown in Figure 17.
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Figure 17: LEFT: Density for the one-dimensional simulation data. There are two components
with variance 1 centered at -9 and 9, respectively, and one component with variance 4 centered at
0. CENTER: Training step classification. RIGHT: Misclassified training observations.

Discriminant Analysis via EM. In discriminant analysis via EM (Section 7.1), if we
assume that each component consitutes as separate group,

> xClass <- c(rep(1,300),rep(2,400),rep(3,300))

> yClass <- c(rep(1,100),rep(2,100),rep(3,100))

then both leave-one-out crossvalidation and BIC choose the equal variance model E in the
training stage:

> round(cv1EMtrain(x,labels=xClass),3)

E V

0.006 0.002

> round(bicEMtrain(x,labels=xClass),3)

E V

-5786.672 -5607.173

The varying variance model V is chosen by both cross-validation and BIC. The training and
test errors for the data with this model are as follows:

> modelV <- mstep(modelName = "V", data = x, z = unmap(xClass))

> classV <- map(estep(modelName = "V", data = c(x,y),

parameters = modelV$parameters)$z)

> classError(classV[1:length(x)],xClass)$errorRate ## training error
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[1] 0.002

> classError(classV[1:length(x)],xClass)$misclassified

[1] 391 990

> classError(classV[-(1:length(x))],yClass)$errorRate ## test error

[1] 0

The classification and classification errors for the training data are shown in Figure 17.

Discriminant Analysis via mclustDA. To illustrate the discriminant analysis via MclustDA
(Section 7.2): we used the same simultated one-dimensional data but assume that observa-
tions are grouped by component variance:

> xClass <- c(rep(1,300),rep(2,400),rep(1,300))

> yClass <- c(rep(1,100),rep(2,100),rep(1,100))

The training stage fits a two component equal-variance model to one group, and a one-
component model to the other:

> xTrain <- mclustDAtrain(x, labels = xClass)

E X

2 1

The classification error rates are the same as we obtained for discriminat analysis via EM
with the 3-class grouping:

> xTest <- summary(mclustDAtest(x,xtrain))

> classError(xTest$classification,xClass)$errorRate ## training error

[1] 0.002

> classError(xTest$classification,xClass)$misclassified

[1] 391 990

> yTest <- summary(mclustDAtest(y,xTrain))

> classError(yTest$classification,yClass)$errorRate ## testing error

[1] 0

The classification and classification errors for the training data are as shown in Figure 17.
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Figure 18: Classification (left) and uncertainty (right) plots created with mclust2Dplot for the
Mclust model of the faithful dataset. The ellipses shown are the multivariate analogs of the
standard deviations for each mixture component. In the classification plot, points in different
classes are indicated by different symbols. In the uncertainty plot, the symbols have the following
meaning: large filled symbols, 95% quantile of uncertainty; smaller open symbols, 75–95% quantile;
small dots, first three quartiles of uncertainty.

9 Displays for Multidimensional Data

Once parameter values of a mixture model fit are available, projections of the data showing
the means and standard deviations of the corresponding components or clusters may be
plotted. In the two-dimensional case, density and uncertainty surfaces may also be plotted.

9.1 Displays for Two-Dimensional Data

The function mclust2Dplot may be used for displaying the classification, uncertainty or
classification errors for MCLUST models of two-dimensional data. In the following example,
classification and uncertainty plots are produced for the faithful dataset in Figure 1.

> faithfulMclust <- Mclust(faithful)

> mclust2Dplot(data = faithful, what = "classification", identify = TRUE,

parameters = faithfulMclust$parameters, z = faithfulMclust$z)

> mclust2Dplot(data = faithful, what = "uncertainty", identify = TRUE,

parameters = faithfulMclust$parameters, z = faithfulMclust$z)

The resulting plots are displayed in Figure 18.
The function surfacePlot may be used for displaying the density or uncertainty for

MCLUST models of two-dimensional data. It also returns the grid coordinates and corre-
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Figure 19: Density (left column) and uncertainty (right column) surfaces for the faithful dataset.
A square root transformation was used for the density plot, which is plotted as a contour surface. A
logarithmic transformation was used for the uncertainty plot, which is plotted as an image surface.

sponding surface values. The following example shows how to display density and uncertainty
surfaces for the Mclust model fit to the faithful dataset.

> surfacePlot(data = faithful, what = "density", type = "contour",

parameters = faithfulMclust$parameters, transformation = "sqrt")

> surfacePlot(data = faithful, what = "uncertainty", type = "image",

parameters = faithfulMclust$parameters, transformation = "log")

The resulting plots are displayed in Figure 19.

38



2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

Sepal.Width

P
et

al
.W

id
th ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

Sepal.Width

P
et

al
.W

id
th

●● ●● ●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●●●●

●

●

●● ● ●

●

● ●

●●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ● ●●●

●

●●

●
●

●

●

●

2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

Sepal.Width

P
et

al
.W

id
th

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

Figure 20: A coordinate projection of the iris dataset created with coordProj. Plots show
the 3-group model-based classification (left) with associated uncertainty (middle) and classification
errors (right).

9.2 Displays for Higher Dimensional Data

9.2.1 Coordinate Projections

To plot coordinate projections in MCLUST, use the function coordProj. The example we
consider is a 3-group model for the iris dataset:

> irisBIC <- mclustBIC(iris[,-5])

> irisSummary3 <- summary(irisBIC, data = iris[,-5], G = 3)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "uncertainty",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "errors",

parameters = irisSummary3$parameters, z = irisSummary3$z, truth = iris[,5])

These plots are displayed in Figure 20.
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Figure 21: Some random projections of the iris dataset created with coordProj. Plots show the
3-group classification from model-based clustering with three different seeds.

9.2.2 Random Projections

To plot random projections in MCLUST, use the function randProj. Again we consider is a
3-group model for the iris dataset:

> randProj( data = iris[,-5], seed = 43, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj( data = iris[,-5], seed = 79, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj( data = iris[,-5], seed = 201, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

These plots are displayed in Figure 21.
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10 Simulation from Mixture Densities

Given the parameters for a mixture model, data can be simulated from that model for eval-
uation and verification. The function sim allows simulation from mixture models generated
by MCLUST functions. Besides the model, sim allows a seed as input for reproducibility. As an
example, below we simulate two different datasets of the same size as the faithful dataset
from the model produced by Mclust for the faithful dataset:

> faithfulMclust <- Mclust(faithful)

> sim0 <- sim( modelName = faithfulMclust$modelName,

parameters = faithfulMclust$parameters,

n = nrow(faithful), seed = 0)

> sim1 <- sim( modelName = faithfulMclust$modelName,

parameters = faithfulMclust$parameters,

n = nrow(faithful), seed = 1)

The results can be plotted as follows:

> mclust2Dplot(data=faithful, parameters = faithfulMclust$parameters,

classification = faithfulMclust$classification)

> mclust2Dplot(data=sim0[,-1], parameters = faithfulMclust$parameters,

classification = sim0[,1])

> mclust2Dplot(data=sim1[,-1], parameters = faithfulMclust$parameters,

classification = sim1[,1])

The plots are shown in Figure 22. Note that sim produces a dataset in which the first column
is the classification.
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Figure 22: Data simulated from a model of the faithful dataset. The left hand figure is the
faithful dataset, and the other two figures are datasets of the same size simulated from the
Mclust model for the faithful dataset. The ellipse defined by the covariance matrices of the
model is shown on all of the plots.
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11 Extensions

11.1 Large Datasets

Mclust and mclustBIC include a provision for using a subsample of the data in the hierarchi-
cal clustering phase before applying EM to the full data set, in order to extend the method
to larger datasets. Some other methods for handling such cases are discussed in [24, 14].
The following example uses a random sample of size 100 in the initial hierarchical clustering
phase of EMclust applied to the iris data:

> nrow(iris)

[1] 150

> S <- sample(1:nrow(iris), size = 100)

> Mclust(iris[,-5], initialization = list(subset = S))

For very large data sets, the discrimination capabilities of MCLUST can be used for classifi-
cation. First, cluster analysis with the methodolgy of Mclust/mclustBIC can be performed
on a subset of the data. Then the remaining data points can then be classified (in reasonable
sized blocks) using one of the discriminant analysis techniques described in section 7.

11.2 High Dimensional Data

Models in which the orientation is allowed to vary between clusters (EEV, VEV, EVV, VVV),
have O(d2) parameters per cluster, where d is the dimension of the data. For this reason,
MCLUST may not work well or may otherwise be inefficient for these models when applied
to high-dimensional data. It may still be possible to analyze such data with MCLUST by
restriction to models with fewer parameters (e.g. spherical or diagonal models), or else by
applying a dimension-reduction technique such as principal components.

Some of the more parsimonious models (e.g. spherical, diagonal, or fixed covariance)
can be applied to datasets in which the number of observations is smaller than the data
dimension.
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12 Function Summary

12.1 Hierarchical Clustering

hc Merge sequences for model-based hierarchical clustering.
hclass Classifications corresponding to hc results.

12.2 Parameterized Gaussian Mixture Models

em EM algorithm (starting with E-step).
me EM algorithm (starting with M-step).

estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.

mvn One-component fit.

12.3 Density Computation for Parameterized Gaussian Mixtures

cdens Component density (without mixing proportions).
dens Mixture density.

12.4 Model-based Clustering / Density Estimation

mclustBIC BIC computation; clusters and models through summary.
Mclust Combines mclustBIC and its summary (fewer options).

12.5 Discriminant Analysis

Class Densities as Mixture Components

cv1EMtrain Training via leave-one-out crossvalidation.
bicEMtrain Training via BIC.

estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.

Parameterized Gaussian Mixture for Class Densities (MclustDA)

mclustDAtrain MclustDA training.
mclustDAtest MclustDA density; classification via summary.

mclustDA Combines mclustDAtrain and mclustDAtest (fewer options).
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12.6 Support for Modeling and Classification

.Mclust vector of default values.
mclustOptions set MCLUST options.

map Convert conditional probabilities to a classification.
unmap Convert a classification to indicator variables.

bic BIC for parameterized Gaussian mixture models.
sim Simulate data from a parameterized Gaussian mixture model.

mapClass Mapping between two classifications.
classError Classification error.

adjustedRandIndex Adjusted Rand Index.
sigma2decomp Convert mixture covariances to decomposition form.
decomp2sigma Convert decomposition form to mixture covariances.

nVarParams Number of variance parameters.

12.7 Plotting Functions

12.7.1 One-Dimensional Data

mclust1Dplot Classification, uncertainty, density and/or classification errors.

12.7.2 Two-Dimensional Data

mclust2Dplot Classification, uncertainty, and/or classification errors.

surfacePlot Contour, image, or perspective plot of either density or uncertainty.

12.7.3 More than Two Dimensions

Classification, uncertainty, and/or classification errors.

coordProj coordinate projections
randProj random projections

12.7.4 Other Plotting Functions

clPairs pairs plot showing classification

uncerPlot relative uncertainty of misclassified observations

plot.Mclust plots associated with Mclust results

plot.mclustBIC BIC plot associated with mclustBIC results

plot.mclustDA plots associated with mclustDA results

plot.mclustDAtrain plots associated with mclustDAtrain results
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A Appendix: Clustering Models

MCLUST usually assumes a normal or Gaussian mixture model

n∏
i=1

G∑
k=1

τk φk(xi | µk, Σk),

where where x represents the data, G is the number of components, and τk is the probabilty
that an observation belongs to the kth component (τk ≥ 0;

∑G
k=1 τk = 1) , and

φk(x | µk, Σk) = (2π)−
p
2 |Σk|−

1
2 exp

{
−1

2
(xi − µk)

T Σ−1
k (xi − µk)

}
. (1)

The exception is for model-based hierarchical clustering, for which the model used is the
classification likelihood with a parameterized normal distribution assumed for each class:

n∏
i=1

φ`i
(xi | µ`i

, Σ`i
),

where the `i are labels indicating a unique classification of each observation: `i = k if xi

belongs to the kth component.
The components or clusters in both these models are ellipsoidal, centered at the means

µk. The covariances Σk determine their other geometric features. Each covariance matrix is
parameterized by eigenvalue decomposition in the form

Σk = λkDkAkD
T
k ,

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues of Σk, and λk is a scalar. The orientation of the principal
components of Σk is determined by Dk, while Ak determines the shape of the density con-
tours; λk specifies the volume of the corresponding ellipsoid, which is proportional to λd

k |Ak|,
where d is the data dimension. Characteristics (orientation, volume and shape) of distribu-
tions are usually estimated from the data, and can be allowed to vary between clusters, or
constrained to be the same for all clusters [19, 2, 6]. This parameterization includes but is
not restricted to well-known models such as equal-volume spherical variance (Σk = λI) which
gives the sum of squares criterion [23], constant variance [15], and unconstrained variance
[22].

In one dimension, there are just two models: E for equal variance and V for varying
variance. In more than one dimension, the model identifiers code geometric characteristics
of the model. For example, EVI denotes a model in which the volumes of all clusters are
equal (E), the shapes of the clusters may vary (V), and the orientation is the identity (I).
Clusters in this model have diagonal covariances with orientation parallel to the coordinate
axes. Parameters associated with characteristics designated by E or V are determined from
the data. Table 1 shows the various multivariate model options currently available in MCLUST

for hierarchical clustering (denoted HC) and EM. These are a subset of the parameterizations
discussed in [6], which gives details of the EM algorithm for maximum likelihood estimation
for these models.

45



A.1 Modeling Noise and Outliers

MCLUST uses a mixture model which has a single term representing noise as a first order
Poisson process to handle noisy data:

n∏
i=1

[
τ0

V
+

G∑
k=1

τkφk(xi | θk)

]
, (2)

in which V is the hypervolume of the data region, and τk ≥ 0;
∑G

k=0 τk = 1. This model
has been used successfully in a number of applications [2, 7, 4, 5].

The basic model-based clustering method needs to be modified when the data contains
noise. First, a good initial noise estimate must be obtained. Some possible methods for
denoising include a Voronöı method [1] and a nearest-neighbor method [3]. The function
NNclean in the contributed R package prabclus is an implementation of the nearest-neighbor
method. Next, hierarchical clustering is applied to the denoised data. Finally, EM based on
the Gaussian model with the added noise term (2) is applied to the entire data set, with the
data removed in the denoising process as the initial noise estimate.

A.2 Model Selection via BIC

Several measures have been proposed for choosing the clustering model (parameterization
and number of clusters); see, e.g., Chapter 6 of McLachlan and Peel (2000). We use the
Bayesian Information Criterion (BIC) approximation to the Bayes factor (Schwarz 1978),
which adds a penalty to the loglikelihood based on the number of parameters, and has
performed well in a number of applications (e.g. Fraley and Raftery 1998, 2002). The BIC
has the form

BIC ≡ 2 loglikM(x, θ∗k)− (# params)M log(n), (3)

where loglikM(x, θ∗k) is the maximized loglikelihood for the model and data, (# params)M
is the number of independent parameters to be estimated in the model M, and n is the
number of observations in the data.

The symbols used in the BIC plots to represent the various models in MCLUST are shown in
Table 2.

A.3 Adding a Prior to the Model

By default, MCLUST does not use prior for modeling. However, users can optionally specify
a conjugate prior of the type described inthis section. For univariate data, we use a normal
prior on the mean (conditional on the variance):

µ | σ2 ∼ N (µP , σ
2/κP)

∝
(
σ2

)− 1
2 exp

{
− κP

2σ2
(µ− µP)

2
} (4)
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and an inverse gamma prior on the variance:

σ2 ∼ inverseGamma(νP/2, ς
2
P/2)

∝
(
σ2

)− νP+2

2 exp

{
− ς2

P

2σ2

}
.

(5)

For multivariate data, we use a normal prior on the mean (conditional on the covariance
matrix):

µ | Σ ∼ N (µP , Σ/κP)

∝ |Σ|−
1
2 exp

{
−κP

2
trace

[
(µ− µP)

T Σ−1 (µ− µP)
]}

,
(6)

and an inverse Wishart prior on the covariance matrix:

Σ ∼ inverseWishart(νP , ΛP)

∝ |Σ|−
νP+d+1

2 exp
{
−1

2
trace

[
Σ−1Λ−1

P

]}
.

(7)

The hyperparameters µP , κP , and νP are called the mean, shrinkage and degrees of freedom,
respectively. Parameters ς2

P (a scalar) and ΛP (a matrix) are the scale of the prior distribution
in the univariate and multivariate cases, respectively. These priors are called conjugate priors
for the normal distribution because the posterior can be expressed as the product of a normal
distribution and an inverse gamma or Wishart distribution.

Functions priorControl and defaultPrior are provided in MCLUST for specifying a prior.
When called with defaults, the following choices are made for the prior hyperparameters:

µP : the mean of the data.

κP : .01

The posterior mean
nkȳk + κPµP

κP + nk

can be viewed as adding κP observations with value

µP to each group in the data. The value we used was determined by experimentation;
values close to and bigger than 1 caused large perturbations in the modeling in cases
where there were no missing BIC values without the prior. The value .01 resulted in
BIC curves that appeared to be smooth extensions of their counterparts without the
prior.

νP : d + 2
Analogously to the univariate case, the marginal prior distribution of µ is a t distribu-
tion centered at µP with νP − d + 1 degrees of freedom. The mean of this distribution
is µP provided that νP > d, and it has a finite covariance matrix provided νP > d + 1
(see, e. g. Schafer 1997). We chose the smallest integer value for the degrees of freedom
that gives a finite covariance matrix.

ς2
P :

sum(diag(var(data)))/d

G2/d (For univariate models, and multivariate spherical or diag-
onal models.) The average of the diagonal elements of the empirical covariance matrix
of the data divided by the square of the number of components to the 1/d power. This
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is roughly equivalent to partitioning the range of the data into G intervals of fairly
equal size.

ΛP :
var(data)

G2/d (For multivariate ellipsoidal models.) The empirical covariance matrix
of the data divided by the square of the number of components to the 1/d power.
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